0=y^2+64y-303

Simple and best practice solution for 0=y^2+64y-303 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=y^2+64y-303 equation:



0=y^2+64y-303
We move all terms to the left:
0-(y^2+64y-303)=0
We add all the numbers together, and all the variables
-(y^2+64y-303)=0
We get rid of parentheses
-y^2-64y+303=0
We add all the numbers together, and all the variables
-1y^2-64y+303=0
a = -1; b = -64; c = +303;
Δ = b2-4ac
Δ = -642-4·(-1)·303
Δ = 5308
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5308}=\sqrt{4*1327}=\sqrt{4}*\sqrt{1327}=2\sqrt{1327}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-2\sqrt{1327}}{2*-1}=\frac{64-2\sqrt{1327}}{-2} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+2\sqrt{1327}}{2*-1}=\frac{64+2\sqrt{1327}}{-2} $

See similar equations:

| -3(2x+2)-4x=7-(3x-5)+2x | | 3y−5=19 | | (w-7)*(w+2)=0 | | 2.1=−0.6m. | | 3(x=2)=2(x-6)=10 | | (x-1)(2x)=28 | | (2z+-6)-2=-10 | | -13=5w+2 | | x+0.05x=5517 | | 3(n+3)=15 | | 7(3y-4)=-27 | | 32k+45=32k-10 | | 7(3y~4)=-27 | | 32=24+x | | 11+-15=6x-4-5x | | (x-8)(x+1)=-20 | | 158=90-x | | 10m+2=22 | | 8367857n=743896 | | x/9+4/3=1/2x-1 | | 5(x-8)-2(3-3x)=4+2(x-3) | | 18-5x=7x+15 | | 5-(x-8)=4x-3 | | x-9+6=-14+2x | | 8.1+3.8h-5.6h=-5.2 | | 3+x−2=10. | | 2(4p-2)-(3p-4)=2p+5 | | x2+4x=285 | | 7.6-0.4m=-3 | | (3x+9)/2=-6 | | (3x+9)/2=6 | | |4n+3|=75 |

Equations solver categories